Effects of migration on impacts due to U32* bycatch and U32* wastage of Pacific halibut

Juan L. Valero Steven R. Hare

86th IPHC Annual Meeting, Seattle January 26, 2010

This presentation is intended to be complemented by a verbal interpretation. As such, it is offered here solely for informational purposes, and to allow some familiarity with the material prior to its formal presentation.

*U32: Under 32 inches

Halibut bycatch history and management

Years	Focus	Approach
1980s	Lost yield	Calculate yield lost (1.4-1.58 lb) per lb of bycatch (all sizes) Reduce fishery yield in proportion to EBio distribution
1990s	Lost egg production	Replace egg loss (1 lb yield) per lb of bycatch (all sizes) Reduce fishery yield in proportion to EBio distribution
1995	Lost egg production	Ad Not implemented als Calculate distribution of U32 impacts by migration modeling
1996 2010	Harvest rate evaluation	Add O32 bycatch to local removals U32 bycatch and U32 wastage into HR evaluation ²

Halibut bycatch and migration

Migration (Juveniles + adults)

Formerly assumed to be completed by age 8

Losses due to bycatch Mostly local ?

PIT tags show ongoing migration of older halibut

Needs reevaluation

OBJECTIVE:

Evaluate **coastwide** and **area specific** impacts of U32 halibut bycatch on Lost Yield, Lost Spawning Biomass and Lost Egg Production when taking into account migration

Modeling structure

Areas 4A, 4B, 4C, 4D and 4E combined as Area 4

6 area model

Area-specific size at age

Migratory age/size structured model

Modeling approach

- Start model with 1996-2008 average U32 fish killed as bycatch (by area, sex and age).
- Keep track of where U32 fish, had they not been killed, would have migrated and contributed to metrics of interest:
 - Lost Yield (LY)
 - Lost Spawning Biomass (SBio)
 - •Egg Loss (EL)
- Migrate fish according to:
 - * One migration matrix (1M) for all sizes (PIT tags). See Blue Book
 - * Two migration matrices (2M) by size. Results presented here

< 65 cm movement based on tagging of juveniles

> 65 cm movement based on PIT tags

• All runs use a constant harvest rate of ~20%

U32 bycatch by area of capture

U32 bycatch by area of capture and area where yield is lost WITH Migration

Lost Yield (No Migration) Lost Yield (With Migration)

Source of U32 bycatch for each area where yield is lost WITH Migration

Area 4 summary of lost yield by % origin of U32 bycatch WITH Migration

Area 3B summary of lost yield by % origin of U32 bycatch WITH Migration

Area 3A summary of lost yield by % origin of U32 bycatch WITH Migration

Area 2C summary of lost yield by % origin of U32 bycatch WITH Migration

Area 2B summary of lost yield by % origin of U32 bycatch WITH Migration

Area 2A summary of lost yield by % origin of U32 bycatch WITH Migration

U32 bycatch by area of capture and area where SBio is lost

U32 bycatch by area of capture and area where SBio is lost

SBio (With Migration)

(Egg Loss replacement) 15 **WITH Migration** 12 ■ 2A 9 ■ 2B 9 **2**C Million Ibs 3A Million Ibs 6 6 □ 3B **4** 3 3 0 0 ALL ЗA 2C 2A 3B 2B 4

U32 bycatch by area of capture and area where eggs are lost

Lost yield due to U32 wastage: Effects of migration

Age freq. distributions of U32 Bycatch, U32 Wastage, Com. Catch

19

Halibut wastage history

U32 wastage by area of capture and area where yield is lost NO Migration

21

U32 wastage by area of capture and area where yield is lost WITH Migration

Lost Yield (No Migration) Lost Yield (With Migration)

Source of U32 wastage for each area where yield is lost WITH Migration

Area 4 summary of lost yield by % origin of U32 wastage

Area 3B summary of lost yield by % origin of U32 wastage

Area 3A summary of lost yield by % origin of U32 wastage

Area 2C summary of lost yield by % origin of U32 wastage

Area 2B summary of lost yield by % origin of U32 wastage

Area 2A summary of lost yield by % origin of U32 wastage

Summary of effects of migration on U32 impacts on Lost Yield (LY), Lost SBio and Egg Loss (EL)

- Coastwide impacts are similar with or without accounting for migration of U32 bycatch and U32 wastage
- Area specific impacts differ by area and type of U32 mortality when accounting for migration :

 Decreased impacts of U32 bycatch & U32 wastage on Area 4 and increased impacts on other areas, particularly Area 2
 Most of the impacts of U32 bycatch from out of area bycatch
 Most of the impacts of U32 wastage are from local wastage 30