

# 2022-24 FISS design evaluation

Children Children

HALIBUT COMMISSIO

Agenda item: 5.2 IPHC-2021-RAB022-06 (R. Webster) RESEARCH

## **IPHC FISS**

- Our most important source of data on Pacific halibut
- Provides data for estimating weight and numbers per unit effort (WPUE and NPUE) indices of density and abundance of Pacific halibut
  - Used to estimate stock trends
  - Used to estimate stock distribution
  - Important input in the IPHC stock assessment
- Provides biological data for use in the stock assessment



### **FISS history 1993-2019**

- A standardised FISS has been conducted by the IPHC each year since 1993
  - Standardised for bait and fishing gear
- From 1993-97 coverage was limited and generally restricted to IPHC Regulatory Areas 2B, 2C, 3A and 3B
- The modern FISS design on a 10 nmi grid began in 1998
- By 2001, annual coverage occurred in all IPHC Regulatory Areas
  - Depth range 20-275 fathoms in Gulf of Alaska and Aleutian Islands
  - Depth range 75-275 fathoms along Bering Sea shelf edge



## **FISS history 1993-2019**

- By 2010, data from other sources showed that not all Pacific halibut habitat was covered by the FISS
  - Pacific halibut were present outside the FISS depth range, in both deep and shallow waters
  - All IPHC Regulatory Areas had coverage gaps, even within the standard depth range
- Such unsampled habitat meant there was the potential for bias in estimates derived from FISS data
- Therefore, a series of FISS expansions from 2011 to 2019 were undertaken covering previously unsampled habitat in all IPHC Regulatory Areas



## **FISS history 2011-2019**

- During the expansions, the FISS occupied for the first time 34% of the stations on the full 10 nmi FISS grid that had been previously unsampled
- The result was an improved understanding of Pacific halibut density and distribution
  - Bias was reduced, with indices for several Regulatory Areas being revised upwards or downwards
  - Uncertainty in estimates of WPUE and NPUE was reduced in most Regulatory Areas
  - These improvements were apparent throughout the time series, not only in the year of the expansion
- The resulting expanded grid of 1890 stations has provided a full FISS design from which stations can be selected for sampling in each annual FISS



### **Full FISS grid**



## **Space-time modelling**

- Space-time modelling of survey data has been used since 2016 to produce WPUE and NPUE estimates
- The modelling has two key purposes:
  - It smooths the data in time and space
    - Makes use of information on spatial and temporal relationships among survey stations to "sort the signal from the noise"
  - It fills in gaps in survey coverage using model predictions, while accounting for uncertainty
    - Gaps previously filled using ad hoc scaling factors based on ratio of averages in surveyed and unsurveyed habitat



## **FISS objectives and design layers**

| Priority  | Objective                                                                                                  | Design Layer                                                                   |  |  |
|-----------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Primary   | Sample <u>Pacific halibut</u> for stock<br>assessment and stock distribution<br>estimation                 | Minimum sampling requirements in terms of:                                     |  |  |
|           |                                                                                                            | Station distribution                                                           |  |  |
|           |                                                                                                            | Station count                                                                  |  |  |
|           |                                                                                                            | Skates per station                                                             |  |  |
| Secondary | Long term revenue neutrality                                                                               | Logistics and cost: operational feasibility and cost/revenue neutrality        |  |  |
| Tertiary  | <u>Minimize removals</u> , and <u>assist</u><br><u>others where feasible</u> on a cost-<br>recovery basis. | Removals: minimize impact on the stock while meeting primary priority          |  |  |
|           |                                                                                                            | Assist: assist others to collect data on a cost-<br>recovery basis             |  |  |
|           |                                                                                                            | IPHC policies: ad-hoc decisions of the<br>Commission regarding the FISS design |  |  |



#### Annual FISS design review/analysis timeline



#### Analysis



#### Annual FISS design review/analysis timeline

Stakeholder input



#### Analysis



### **Proposed FISS designs for 2022-24**

- As in 2021, the proposed designs use efficient subarea sampling in IPHC Regulatory Areas 2A, 4A and 4B, but incorporate a randomized design in IPHC Regulatory Areas 2B, 2C, 3A and 3B
- We continue to propose sampling all standard FISS stations in IPHC Regulatory Area 4CDE
  - A highly dynamic area with apparently northward-shifting distribution, and uncertainty regarding connectivity with populations near to and within in Russian waters
- It is likely that these designs represent the maximum effort that can be deployed outside the core areas in coming years, while still meeting the Secondary Objective.



#### Proposed 2022 FISS design



#### **Proposed 2023 FISS design**



#### **Proposed 2024 FISS design**



### **Projected CVs**

• The proposed designs have high sampling rates in Regulatory Areas 2B, 2C, 3A, 3B and 4CDE

- CVs will remain well within the target range (<15% per Reg. Area)

- Randomised or full sampling designs in these areas will result in unbiased estimation
- In other Reg. Areas we project the following CVs (%) after completion of the 2024 FISS:

| Reg. Area | 2021 | 2022 | 2023 | 2024 |
|-----------|------|------|------|------|
| 2A        | 13   | 13   | 14   | 15   |
| 4A        | 10   | 9    | 9    | 10   |
| 4B        | 10   | 12   | 10   | 12   |



### **Consideration of cost**

- The proposed FISS designs for 2022-24 incorporate some consideration of cost
  - Logistically efficient subarea designs are proposed in lower-density IPHC Regulatory Areas.
- The goal here was to provide statistically efficient and logistically feasible designs for consideration by the Commission
- The FISS is funded by sales of captured fish and is intended to have long-term revenue neutrality, meaning that any design must also be evaluated in terms of the following factors:
  - Expected catch of Pacific halibut
  - Expected Pacific halibut sale price
  - Charter vessel costs, including relative costs per skate and per station
  - Bait costs
  - IPHC Secretariat costs



#### **Optimized design for 2022**



## **RAB** input

- Designs are proposed based on scientific objectives, and possibly modified to meet secondary and tertiary objectives
- However, there is the potential for flexibility in FISS implementation
- In use or being considered by IPHC:
  - When adding stations to meet revenue neutrality objective, exclude harder-to-fish deep stations (and shallow stations)
  - Prioritize order in which stations are fished
  - Reduce the number of skates fished in low-density/expensive regions
  - Improve sales choices regarding price accepted for bycatch species



## **RAB** input

- Other options for discussion:
  - Multi-year bids
  - Dual-vessel bids
  - Sharing stations between vessels to optimize tidal windows
  - Adding stations back into the design to improve operational efficiency
    - e.g., when a station is isolated, add adjacent station(s) that were not part of the original design



#### Recommendation

That the Research Advisory Board:

**NOTE** paper IPHC-2021-RAB022-06 that presents the FISS design proposals for 2022-24 together with an evaluation of the proposed designs;



#### **INTERNATIONAL PACIFIC**





INTERNATIONAL PACIFIC HALIBUT COMMISSION

