INTERNATIONAL PACIFIC

Report on current and future biological and ecosystem science research activities

Agenda Item 7 IPHC-2022-SRB020-08 (J. Planas)

RE

SEARCH

Outline

Progress in key research areas:

- 1. Reproduction
- 2. Discard mortality rates: guided recreational fishery
- 3. Catch protection strategies against whale depredation
- 4. Population genomics

Publications: Fish et al. (2020) *Journal of Fish Biology* **97**: 1880–1885 Fish et al. (2022) *Frontiers in Marine Science* **9**: 801759

Microscopic maturity staging: based on histological oocyte stages

Female developmental stages

Vtg1 (Vitellogenic 1) Vtg2 Vtg3 GVM (Germinal vesicle migration) PO (Periovulatory) PS (Post-spawning)

Fish et al. (2022) Front. Mar. Sci. 9:801759

FISS 2022: ovarian sample collection for histology-based maturity

Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE
	Histological maturity assessment	Updated maturity schedule			
Reproduction	Examination of potential skip spawning	Incidence of skip spawning	Scale biomass and reference point estimates	1. Biological input	Improve simulation of spawning biomass in the Operating Model
	Fecundity assessment	Fecundity-at-age and -size information			
	SRB019-Req.06 (para. 46) The SRB NOTED that the IPHC Secretariat is finalising a proposed sampling				
	design for the collection of ovaries in the 2023 FISS, for providing precise estimates of				
	fecundity and REQUESTED for SRB020 in June 2022, more detail on the considerations				
	taken to ensure the sampling maximises the opportunity to address the objectives.				
	landings		intensity	collection and processing	

HALIBUT COMMISSION

FISS 2023: ovarian sample collection for fecundity estimations

Method: Auto-Diametric Fecundity Estimation

Method: Auto-Diametric Fecundity Estimation

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Method: Auto-Diametric Fecundity Estimation

INTERNATIONAL PACIFIC HALIBUT COMMISSION

FISS 2023: ovarian sample collection for fecundity estimations

INTERNATIONAL PACIFIC HALIBUT COMMISSION

2. Mortality and Survival Assessment

External Funding: Saltonstall-Kennedy NOAA (2017-2020); NFWF (2019-2021); NPRB#2009 (2021-2022)

Publications: Kroska et al. (2021) <u>Conservation Physiology</u> 9: coab001

Loher et al. (2022) North American Journal of Fisheries Management 42: 37-49

Guided recreational fishery

NFWF National Fish and Wildlife Foundation
Image: State of the state of

- 2. Investigate the relationship between gear types and capture conditions and size composition of captured fish
- 3. Injury profiles and physiological stress levels of captured fish
- 4. Assessment of mortality of discarded fish

- Two gear sizes: 12/0 and 16/0 hooks
- Observations and samples: hooking time, time on deck, weight, length, hook injury type and picture, viability, fat content, fish temperature, blood sample, fin clip, tag.

- Sitka, AK 243 fish sampled, and wire tagged
 - $52 149 \text{ cm} (x = 80.1 \pm 19.0 \text{ cm}), 1.5 49.8 \text{ kg} (x = 7.4 \pm 7.5 \text{ kg})$
- Seward, AK 118 fish sampled (80 sPAT tags, 38 wire tags)
 - $42 110 \text{ cm} (x = 72.5 \pm 14.1 \text{ cm}), 0.6 17 \text{ kg} (x = 5.0 \pm 3.3 \text{ kg})$

Gear types and catch size composition

B) Length distributions by hook size

Length (cm)

C) Length distributions by tag type (Seward)

Injury Profiles

0.04

0.01

8

Sitv

Preliminary results: Quantify and Characterize Survival

- Tags
 - Wire = 281 (243 Sitka, 38 Seward) 27 recovered to date
 - sPAT = 80 (Seward) 76 provided functional data
 - 7 fishery recoveries, 21 premature release, 48 full duration
 - 3.42% (0.00 8.04 Cl) / 2.04% (0.00-5.92 Cl)

B) sPAT Tag

C) Typical acceleration patterns for fish that survive and fish that die

A) Wire Tag

IPHC

Preliminary summary

- First time for determination of Pacific halibut discard mortality within the recreational fleet
- Charter recreational vessels represent good platforms for research
- Hook size does not appear to have a marked difference in size of catch
- Different hook sizes have similar injury profiles
- Torn cheek being the predominant injury
- Physiological parameters still being developed/analyzed
- Preliminary tagging results show low mortality, consistent with current discard mortality estimates

3. Catch Protection – Depredation

Bycatch Reduction Engineering Program (BREP) NA21NMF4720534

1st International Workshop on Protecting Fishery Catches from Whale Depredation:

- Virtual workshop 74 participants from 6 countries
- 3 presentations on different strategies for protecting the catch from longlines:
 - Shuttles Sago Solutions (NO),
 - Shrouds INFREMER, IRD, MARBEC, (FR)
 - Slinky Pots Fish Tech Inc. (US)
- Cover the catch shroud/cachalotera or via shuttle

- Small size for smaller vessels (slinky pots don't require reconfiguration or large stowage concerns)
- Branchlines to break gear into smaller manageable subunits
- Short gangions to keep catch near a mainline /reduce fouling/keep within the reach of the shroud
- Minimize fiddling with release mechanisms or repacking of shrouds

Slide 17

IPHC

Pilot Phase:

- Late Summer, early fall. Preferably on an open deck vessel
- Central Gulf of Alaska (3A) variety of fish size and decent catch rates

3. Catch Protection – Depredation

- Test two different models
 - i. Reduced size Sago Extreme shuttle with modified entry (A)
 - ii. Open end slinky pots over easy slip snap gear on branchlines (B)
- Testing
 - i. Deployment / Retrieval logistics
 - ii. Optimal configurations (weighting, attachments)
 - iii. Basic performance (species/sizes)

(BREP) NA21NMF4720534

A) Sago shuttle

Research outcomes:

- Sequenced genome (size=602 Mbp)
- SNP detection and genotyping
- Full annotation (NCBI) (27,944 genes)
- · 24 chromosome-length scaffolds

External Funding: NPRB#2110 (2021-2024) Publications: Jasonowicz et al. (2022) Molecular Ecology Resources (In Press)

HALIBUT COMMISSION

- Address potential quality differences in the raw data
- Increased stringency of read trimming sliding window
- Check for systematic differences among runs PCA

Comparison of Sequencing Runs

- Difference in base quality scores between the sequencing platforms is the result of different sequencing chemistries.
- Re-sequence IPHC_001 (n=36) on the final NovaSeq run.
- Incorporate additional steps from Lou & Therkildsen 2021 to mitigate possible batch effects.
- Version 2 of the reference genome Will require re-processing of all samples.
 - Lou, R. N., and N. O. Therkildsen. 2021. Batch effects in population genomic studies with low-coverage whole genome sequencing data: Causes, detection and mitigation. Molecular Ecology Resources (July):1–15.

Recommendation

That the SRB:

• **NOTE** paper IPHC-2022-SRB020-08 which outlines progress on the IPHC's 5-year Biological and Ecosystem Science Research Plan (2017-21).

INTERNATIONAL PACIFIC

INTERNATIONAL PACIFIC HALIBUT COMMISSION

