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ABSTRACT

We generalize the Brownie 3-age class model for band-recovery data to one
allowing for 8-age classes, and apply it to the Pacific halibut tagging data collected
by the International Pacific Halibut Commission from 1979-1986 for areas 2B, 2C
and 3A. Because of the small sample size, the data collected from three areas were
combined together and analyzed as though from a single population. For the halibut
data, age information was not recorded at tagging, but an age-length key was available.
The age-length was used to form 8 size classes that approximately corresponded to
1-year age classes. The structure of the tag recovery models is generally based on
three types of parameters: the annual survival rates, the direct recovery rates (for
newly tagged fish) and the indirect recovery rates (for previously tagged fish). We
fitted a variety of models based on allowing differing degrees of age and calendar
year (at recovery) dependence for all three types of parameters.

We found that the direct recovery rates were low and variable and had to be
viewed as nuisance parameters. To simplify the modeling effort and increase precision
of estimates we only allowed age dependence of direct recovery rates even though
that introduced some lack of fit into our models. We found that indirect recovery
rates are strongly dependent on calendar year (at recovery) and age class. These
rates were found to increase in an approximately linear manner with age class for the
range of ages we considered (6 - >13). We found that survival rates are also strongly
age and calendar year (at recovery) dependent. Pacific halibut of age 6 have an
annual survival rate of about 56% on average. This rises to almost 78% for age 7 fish
and then drops to approximately 70% for fish at age 8, 9, or 10. Fish of ages 11, 12,
or >13 have approximately constant survival according to our model selection
procedure. Survival estimates are likely to be biased low to some unknown extent
due to heterogeneity of capture and survival rates and some possible tag loss. The
goodness of fit of our models was good except in the direct (or first year) recovery
cells which is not likely to be of practical concern. We did have some difficulty
fitting some models iteratively due to the large number of parameters involved.
However, the consistency of our estimates across a wide class of models suggest our
results are very reliable.

We conjecture that the reporting rate of tags is in the range of 25 - 40% based
on assuming that a natural mortality rate of about 0.2 is reasonable for the older age
classes examined. We could detect no clear trend in natural mortality rate with age
but data limitations suggest caution in interpreting our results here. We suggest the
need for special studies to (1) evaluate the bias introduced from tag induced mortality,
(2) evaluate the bias introduced by tag loss, (3) estimate reporting rate and (4) explore
the need for increasing reward values on tag returns to increase the reporting rate.
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INTRODUCTION

Capture-recapture methods have been widely used in the estimation of
demographic parameters of fish and wildlife populations. The basic model which
allows estimation of population parameters for an open population is the Jolly-Seber
model (Jolly 1965, Seber 1965). The Jolly-Seber model makes the assumption that
all animals in the population have the same survival and capture probabilities for
each sampling period. This assumption may be true for some species of animals, but
is more questionable for fish where the survival rates and recovery rates may depend
on size, age, sex, or other factors. Pollock (1981) generalized the Jolly-Seber model
to allow for age-dependence of survival and capture probabilities. See also Pollock
et al. (1990), Pollock (1991), and Lebreton et al. (1992) for recent general reviews of
capture-recapture models.

Brownie et al. (1985) developed a basically equivalent model for tag recovery
data where 3 age-classes are identified at tagging and survival and recovery
probabilities are allowed to depend on all 3 age classes. In order to examine the
relationship between survival and age in more detail, we need models that are more
general than those in Brownie et al. (1985). In this paper we generalize the 3-age
class model to one allowing for 8-age classes. We also examine a series of reduced-
parameter versions of the most general model which make increasingly restrictive
assumptions about the effect of calendar year and age on survival and recovery rates.
Hypotheses about the effects of year or age on survival and recover rates are tested
by comparing different models. These models are applied to some tag-recovery data
of Pacific halibut (Hippoglossus stenolepis) provided by the International Pacific
Halibut Commission (IPHC). We consider separate estimation of fishing and natural
mortality rate parameters for a range of hypothetical reporting rates. We also consider
indirect methods of estimating the reporting rate. We conclude with a discussion of
our estimates and possible future studies.

This work was completed in 1992 but publication has been delayed. If the
work were being done now we would use the non-mixing model described in Hoenig
et al. (1998a). Also we would possibly use fishing effort as a covariate as described
in Hoenig et al. (1998b). However, we do not believe these alternate analyses would
change our conclusions substantially.

METHODS
The Tag Recapture Data
Over the past 60 years the [PHC has carried out an extensive tagging program.

The tagging has usually been opportunistic during the course of setline or trawl surveys
conducted for other purposes. Tag returns have typically been from commercial
5




fishermen although recently there have been some returns from research cruises. Sport
caught halibut tag returns are insignificant.

There have been two primary objectives of the tagging studies. The first is to
get a clear idea of migration patterns of the halibut while the second is to estimate
natural and fishing mortality. R. Deriso carried out some analyses to estimate
migration rates but a lot more could be done (Quinn et al. 1985). Myhre (1967)
obtained mortality estimates based on a regression model by Gulland (1963).

The halibut tag data were collected by IPHC personnel from 1979 to 1986 in
Areas 2B, 2C and 3A. The data collected from those three areas were treated as from
one population because of small sample sizes. In order to estimate age-specific
survival rates from these data it is necessary to group fish at the time of release into
1- year age classes, except for the final class which contains all older fish. For the
halibut data, age information is not available but the length was recorded for each
tagged fish at the time of release. In addition to the length information, an age-
length key was provided by Pat Sullivan (IPHC) for Pacific halibut (Table 1). The
age-length key was used to form 8 size classes that best corresponded to 1-year classes
in the following manner.

The age 8, 9, 10, 11 and 12 from the Table 1 on the right are equivalent to size
class 3, 4, 5, 6, and 7 respectively shown on the left, and ages greater than 13 were
grouped into size class §. Boundaries for these size classes were the values midway
between the mean lengths for age 8 to 13. As the recovery data included a substantial
number of fish less than 86 cm in length, two classes were created to represent 6 and
7 year old fish assuming a width of 11 cm for each of the corresponding size classes
1 and 2. Data of fish less than 64 cm in length were omitted from analysis because of
the greater uncertainty involved in grouping these into age classes on the basis of
size. Each tagged fish greater than 64 cm at release was assigned to one of these 8
age classes, and tag-recovery data were summarized by constructing 8 data arrays,
one for each age-class. Each of these 8 data arrays is a recovery matrix (see example
on Brownie et al. 1985, p. 118) containing numbers released and recovered for the
syears 1979 to 1986. For completeness these data arrays are included in Appendix I.

Model Structure and Assumptions

We develop and refine survival and recovery rate estimates based on models
developed by Brownie et al. (1985). Let us consider the possible fates of a tagged
fish at the start of the year based on the diagrams in Brownie et al. (1985, p.14):

survives
year
s tag found and
/ reported to IPHC
Tagged fish alive u killed and retrieve
at start of year by fishing boat
1-A
1-s-u tag not found

or not reported

dies from “natural” causes
or not retrieved by fishing
boat
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where s = the annual survival rate (finite) or the probability of surviving the year.

u = the exploitation rate (finite) or the probability of being harvested by the
fishing fleet

v =1 - s - u = the natural mortality rate (finite) or the probability of dying
from natural causes (if we can assume that all fish killed are retrieved by
the fishing fleet).

A = The tag reporting rate, the probability that a tag will be found and reported
to the IPHC given that the fish has been harvested.

Table 1. The size class age class classification of Pacific halibut used in tag recovery
analysis constructed from an age length key provided by IPHC.

Age class’ Length (cm) Width (cm) Actual age’
1 64-74 11 6
2 75-85 11 7
3 86-95 10 8
4 96-104 9 9
5 105-113 9 10
6 114-121 8 11
7 122-128 7 12
8 >129 13

'We used only 8 age classes due to data limitations.
2Age—length key provided only started with age 8. We extrapolated back to age 6 to better use
the data available.

Note that the type of data we analyze supplies information directly about only
those fish which are harvested and their tags reported. Therefore, the product £ = Au,
the tag recovery rate, is estimable but the component rates A and u are not estimable
without additional information on reporting rate. A modified diagram is as follows:

survives year

Tagged fish alive f killed, retrieved and tag
at start of year reported by fishing boat
1-s-f

dies from “natural” causes
or not retrieved or tag not reported




There are numerous assumptions involved in making inferences from tagging
models which are based on Brownie et al. (1985, p. 6)

(1) The sample is representative of the target population.
(2) There is no tag loss.
(3) Survival rates are not influenced by the tagging process itself.

(4) The year of recovery, size at release, location and other important information is
correctly tabulated.

(5) The fate of each tagged fish is independent of the fate of all other tagged fish.

(6) All tagged fish within an identifiable class (size, age, sex, ..., etc.) have the same
annual survival and recovery rate.

In addition to the assumptions above, we also assume that

(7) The halibut of size class i will increase its length to the size class i + 1 after one
year.

Any violation of the assumptions listed above may cause bias in the estimation
of survival and recovery rates. Pollock and Raveling (1982) and Nichols et al. (1982)
discussed the bias caused by failures (1) to (6). We discuss possible biases due to
violation of all assumptions later in this article, including assumptions (7) which has
not been discussed elsewhere.

The models used in the analysis of the halibut data are extensions to an 8 age
class situation of the models developed by Brownie et al. (1985, chapter 4) for analysis
of tag-recovery data for a 3-age class situation. We emphasize that the structure of
the tag recovery models is generally based on two types of parameters: the annual
survival rate and the annual recovery rate (which are both estimable). In addition,
the recovery rates are allowed to differ for newly tagged and previously released
fish, because the newly tagged fish may not be so readily available for recapture.
These parameters may vary by year or by age class. Here we investigate a series of
year or age-specific assumptions for the survival and recovery rates of halibut. Figure
1 outlines the models discussed in the article. The most general model (Model 0) is
discussed first, followed by a series of more restrictive models with reduced numbers
of parameters.

Model 0 (the so called null model) assumes the survival rate (sﬁ ), indirect
recovery rate ( f}), and direct recovery rate (f’}* ) are both year and age specific where

s§ denotes the survival rate for age class i in the jth year; fij denotes the indirect
recovery rate (i.e. the recovery rate for previously tagged fish) for age class i in the
jth year; fij* denotes the direct recovery rate (i.e. the recovery rate for newly tagged

fish) for age class i in the jth year. Based on these assumptions, the model structure
is expressed in terms of the multinomial cell probabilities (see Brownie et al. 1985,
p. 119). There are 162 identifiable parameters in Model 0, and the Maximum
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Model 0 w

f*, f, s: year and age specific
162 parameters

(Model 4 \

f*: age specific but not year specific
Model 3 f: year specific and linearly related to age
f: year and age specific s: year specific and 6 groups of age class:
*, s: age specific but not year specific B S S=¢/=g8

65 parameters PRI

-Log (likelihood) = 727.80 63 parameters
\—Log (likelihood) = 698.94 )

f )
Model 2
f: year specific and linearly related to age class
*, s: age specific but not year specific
30 parameters
-Log (likelihood) = 745.16

Model 1
f*, £, s: age specific but not year specific
23 parameters
-Log (likelihood) = 1060.96

~

Figure 1. Outline of models discussed.

Likelihood Estimates (MLE’s) can be expressed explicitly.

Model 1 is a restriction of Model 0 with age dependence but no year
dependence for the survival rates, indirect recovery rates and direct recovery rates.
There are 23 parameters, and their MLE’s do not have an explicit algebraic form.

Model 2 is a generalization of Model 1 and assumes the relationship between

the year-specific indirect recovery rate and age class is linear where f§=ﬂ0j+/31jxi.

Survival and direct recovery rates are age specific but not calendar year dependent.
Under these assumptions there are 30 parameters.

Model 3 is a generalization of Model 2. It allows the indirect recovery rates
to be both year and age dependent, but not linearly so. Survival rates and direct
recovery rates are age specific only. Under the assumptions there are 65 parameters.

Thus Model 2 is a reduced version of Model 3 and has 30 parameters only
(compared to 65 parameters for Model 3).

Models 1, 2, and 3 form a series of increasingly general models which allow
different assumptions about the effect of age on recovery rates while assuming survival
rates to be age dependent but independent of year. The tests between these models
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focus on the relationship between recovery rates and age (see Figure 1). A fourth
model is used to investigate the relationship between survival rates and the age classes,
while allowing calendar year specificity of survival and indirect recovery rates.

Model 4 allows us to model the year dependent effect of survival rates and
indirect recovery rates simultaneously. In the model we assume that the survival
rates are year dependent and are related to a restructured grouping of ages; the direct
recovery rates depend on age but not on year; and indirect recovery rates are a linear
function of age class in each year. Six groups of age classes (age class 1, age class 2,
age class 3, age class 4, age class 5 and age class 6-8) are depicted in the model.
There are 63 identifiable parameters in this model.

Model 4 can thus be viewed as an alternative generalization to Model 2 that
is used to explore survival as an year and age dependent process.

The MLE’s of the parameters of all the models described above do not have
an explicit form, except for those in Model 0. The numerical maximum likelihood
estimates for survival rate, indirect recovery rate and direct recovery rate were obtained
using SAS PROC NLIN METHOD = DUD (version 5) (SAS 1985) as outlined in
Burnham (1989), and also using the program SURVIV (White 1983) on an IBM
personal computer. The differences in the models above are due to changes in the
assumptions about the survival rates or the indirect recovery rates. Likelihood Ratio
Tests and the Akaike Information Criterion (Akaike 1971, 1974) were used for testing
between models.

Separation of Fishing and Natural Mortality Rates

Earlier, we emphasized that it is possible to estimate annual survival rate (s)
and recovery (f) from a multi-year tagging study. Pollock et al. (1991) developed
methodology for separating natural and fishing mortality when an estimate of reporting
rate (A) is available. Here we present their important equations modified slightly
because we do not separate solicited and reported tags.

The estimate of exploitation rate (u) is
i=f/4

and the estimates of natural mortality rate (v) is

A
~

v=1-S-0
These are both finite rates. Assuming that Pacific halibut are subject to a type I fishery,
(i.e. very short so fishing and natural mortality are not occurring at the same time) we

can also estimate instantaneous rates as below. The total instantaneous mortality rate
is

Z =- loge (é)
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the instantaneous fishing mortality rate is
F=—log,(1-1)

and the instantaneous natural mortality rate is

Estimation of Reporting Rate

Ideally reporting rate should be estimated from either a port sampling scheme
or areward tag study (Pollock et al. 1991). For Pacific halibut, however, those special
studies have not been done. Therefore we must use an indirect (perhaps circular)
argument to estimate reporting rate. P. Sullivan of IPHC (personal communication)'
indicated that in many of the IPHC modeling activities they use M = 0.2. We looked
at our estimates of M over age classes for a range of reporting rates and determined
which reporting rate gave M’s around 0.2 for all our age classes.

RESULTS
Survival and Recovery Rate Estimates

Model Selection and Goodness of Fit

We considered a variety of models to estimate survival and recovery rates
(Figure 1). The most general model (Model 0) allows survival rates and both direct
and indirect recovery rates to be both age and year specific. Model 0 has 162 estimable
parameters. The most restrictive model (Model 1) only allows survival rates and
both direct and indirect recovery rates to be age specific. Model 1 has only 23
parameters that are estimable. In Appendix II all the parameter estimates for all the
models are presented.

Before we discuss the survival and recovery rates estimates themselves let us
consider the difficult task of model selection. In order to choose a model which has
sufficient parameters to provide an adequate description of the data, but not so many
as to make estimation inefficient, we examined several sequences of hierarchical
models and compared them using likelihood ratio tests, the AIC criteria and
consistency of important parameter estimates. Table 2 provides a summary of the
likelihood ratio test and AIC results for the model] tests.

First let us consider the modeling of the first year (or direct) recovery rates.
Because of the timing of the fishery, soon after tagging and perhaps due to behavioral
response of the fish to tagging we found that direct recovery rates were low, variable
and difficult to interpret. We decided to view these parameters as nuisance parameters
because they are difficult to interpret and not very useful biologically. We restricted

!Sullivan, P. J. International Pacific Halibut Commission. P.O. Box 95009, Seattle, WA 98145-2009.
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Table 2. Comparison of models.
Log-likelihoods and AIC

Model No. of Parameters Log-likelihood of SURVIV AIC?
Model 1 23 -1060.96 2167.92
Model 2 30 -745.16 1550.31
Model 3 65 -727.80" 1585.60
Model 4 63 -698.94' 1523.88
Model 0 162

Likelihood ratio tests

Models -2Log-likelihood ratio D.F.

Model 1 vs. 2 631.61 ** 7

Model 2 vs. 3 3472 35

Model 2 vs. 4 92.44 ** 33

"The value for this model was estimated from NLIN. All other log-likelihoods are from
SURVIV.

AIC: Akaike Information Criterion = 2(No. of parameters - Log-likelihood)

ourselves to models where the direct recovery rates were age dependent but constant
between years. This was to reduce the number of parameters to estimate in the hope
of increasing precision of the remaining estimates. We note that checking for goodness
of fit we found all our models fit quite well except for the first year of tagging. We
were encouraged by this because any bias due to lack of fit is likely to mainly influence
the direct recovery estimates which are not very important anyway.

Once we had decided on having direct recovery rates age dependent only we
had to consider how to model survival and indirect recovery rate parameters. These
parameter estimates are very important and we consider a wide variety of models.
Examination of Tables 3 and 4 show that both survival and indirect recovery rates
under Model 0 (the most general model) are strongly age and year dependent. First
we considered how to model the indirect recovery rates. Table 4 shows strong evidence
of an increase in recovery rate with age class. This lead to the models 2 and 3 which
compared fitting a general age and year dependent model (Model 3) against a restricted
model where recovery rate was linearly related to age in each year class (Model 2).
The results of the AIC test suggest it is reasonable to model indirect recovery rates as

Table 3. Survival rate estimates under Model 0 classified by age class and calendar year.
Estimates are expressed as percentages and rounded to one decimal place.
Age Class (Age)
Year 1(6) 2(7) 38 49 50 6(11) 712 8(=13) Mean
1979 55.8 68.2 52,6 34.1 57.0 48.1 47.0 72.9 54.5
1980 51.1 74.8 54.5 100.0 94.4 66.2 56.9 51.8 68.7
1981 38.4 59.4 564  66.2 41.1 45.1 47.2 40.6 49.3
1982 842 100.0 68.8 72.6 53.5 66.8 56.8 63.2 70.7
1983 56.7 82.4 834 779 822 74.5 72.0 71.8 75.1
1984 67.3 84.6 80.0 72.6 89.1 71.5 75.4 70.8 76.4
Mean 58.9 78.3 66.0 70.6 69.7 62.0 59.2 61.8 65.8
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Table 4. Recovery rate estimates for previously tagged fish under Model 0 classified by
age class and calendar year. Estimates are expressed as percentages and
rounded to two decimal places.

Age class (Age)*
Year 2(7) 38 409) 510 6(1) 7(12) 8(=13) Mean
1979 0.71 2.84 5.20 3.73 2.70 5.53 3.56 3.90
1980 063 2.09 3.43 2.32 4.28 4.31 4.01 3.01
1981 1.33 1.56 1.65 3.67 3.98 5.50 7.59 3.61
1982 4.34 1.09 3.06 3.88 5.75 4.52 5.59 4.03
1983 1.35 2.86 4.11 5.13 5.69 8.22 7.48 498
1984 148 2.75 4.58 5.02 5.72 7.05 8.68 5.04
Mean 1.64 220 3.67 3.96 5.19 5.86 6.15 4.10

*It is not possible to estimate age class 1 or age 6 indirect recovery rates under this model.

linearly related to age in each class, while the likelihood ratio test indicates there
would be no significant loss of information in doing so.

Now that we had established the structure of the models for direct and indirect
recovery rates (linearly related to age in each year class separately) we began looking
in more detail at how to model the survival rate parameters. Examination of Table 3
shows that survival rates are strongly year dependent and strongly age dependent.
under Model 0. One possible approach is to consider a model that allows age’
dependence. This gave rise to Model 4. A comparison of estimates indicates that
Model 4 appears to be close to the age dependent structure shown in Model 0. If we
look at the arithmetic mean survival rates in Model 0 there is a strong suggestion that
age classes 6 - 8 have similar values while age class 5 has a much higher value.
Considering age classes 6 - 8 constant in survival rate is the structure of Model 4.
Therefore, when we consider age dependence later, we will use Model 4 as the basis
for our discussions.

Survival Rate Estimates

In Tables 3 and 5 we consider the survival rate estimates for Model 0 and
Model 4. The results are very comparable for both models. There is very strong year
dependence. For example the average survival rate in 1981 is about 0.49 (or 0.48)
compared to a much higher survival rate of 0.75 (or 0.77) in 1983. There is also very
strong age dependence in the survival rates. Again the results from the two models

Table 5. Survival rate estimates under Model 4 classified by age class and calendar year.
Estimates are expressed as percentages and rounded to one decimal place.

Age Class
Year 1 2 3 4 5 6 7 8 Mean
1979 51.7 773 59.6 426 66.6 51.1 511 51.1 56.4
1980 49.9 82.5 69.3 100.0 100.0 66.1 66.1 66.1 75.0
1981 395 57.8 48.1 59.9 45.1 454 454 454 48.3
1982 84.5 983 759 788 60.5 53.7 537 537 69.9
1983 56.0 813 915 78.7 76.5 78.6 78.6 78.6 77.5
1984 54.0 722 807 64.6 73.6 664 664 66.4 68.0
Mean 55.9 782 70.8 70.8 70.4 602 602 602 65.8
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Table 6. Recovery rate estimates for previously tagged fish under Model 4 classified by
age class and calendar year. Estimates are expressed as percentages and
rounded to two decimal places.

Age Class
Year 2 3 4 5 6 7 8 Mean
1979 145 240 3.34 428 5.23 6.17 7.11 4.28
1980 1.02 170 2.38 3.07 3.75 443 5.11 3.07
1981 0.81 1.77 2.73 3.69 4.65 5.61 6.57 3.69
1982 042 148 2.53 3.59 4.64 5.70 6.76 3.59
1983 1.77 2.82 3.87 491 5.96 7.01 8.06 4.92
1984 198 3.22 4.46 5.70 6.94 8.18 9.42 5.70
Mean [1.24 223 3.21 4.21 5.20 6.18 7.17 4.21

are very comparable with the interesting exception of age class 3 where Model 0
given an average of 0.55 compared to 0.71 for Model 4. We believe that the Model 4
result is more reasonable biologically, but do not have an explanation of the difference.
We note that there is less data in the younger age classes and that Model 0 has many
more parameters so perhaps this estimate is unusual due just to chance.

In Table 7 we decided to consider the age-dependent survival estimates of all
the models fitted. Note that all the estimates show very similar patterns. Consider in
particular Model 1, Model 4 and Model 0. All three of these models show that the

Table 7. Age-dependent survival rate estimates for a variety of different models.

Age Class
Model 1 2 3 4 5 6 7 8
1 56.5 78.0 713 74.3 72.5 66.8 62.6 64.8
2 53.5 79.3 74.4 64.5 674 60.7 60.9 613
3 56.0 71.7 68.8 69.8 67.7 60.8 59.2 61.0
4 55.9 78.2 70.8 70.8 70.4 60.2 60.2 60.2
0 58.9 78.3 66.0 70.6 69.7 62.0 59.2 61.8

Table 8. Age-dependent indirect recovery rate estimates for a variety of different models.

Age Class
Model 2 3 4 5 6 7 8
1 1.23 2.90 4.56 5.21 6.48 7.40 8.85
2 1.36 2.49 3.62 4,76 5.89 7.03 8.16
3 1.09 2.63 4.17 4.65 6.17 7.09 7.96
4 1.24 223 321 421 5.20 6.18 7.17
0 1.64 2.20 3.67 3.96 5.19 5.86 6.15
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survival rate is low for age class 1, rises markedly for age class 2, declines somewhat
for age classes 3, 4 and 5, and then drops markedly for age classes 6, 7, and 8. Model
1 and Model 0 both suggest constant survival for ages classes 6 to 8 which is the
structure assumed in Model. 4

Indirect Recovery Rate Estimates

In Tables 4 and 6 we consider the indirect recovery rate estimates for Model 0
and Model 4. The trends are very comparable in both models although the values
tend to be higher overall for Model 4. There is a very strong year dependence. There
is also very strong age dependence. In fact, as we discussed earlier we have fitted
recovery rate as a linear function of age class for each year class separately. This is
not surprising because fishing for Pacific halibut is known to be very size (and hence
age) selective.

In Table 8 we consider the age-specific indirect recovery rate estimates for
all the models fitted. While the trends are very similar there are differences. Model
1 gives the highest recovery rates at the older ages, Model 4 gives medium recovery
rates at the older ages, and Model 0 gives the lowest recovery rates at the older ages.
We tend to feel most comfortable with estimates under Model 1 and Model 4 because
of their higher precision relative to Model 0.

Recovery rate estimates may be viewed as an index to fishing pressure. In
the next section we consider how they may be converted to absolute exploitation
rates (assuming we have an estimate of reporting rate).

Estimates of Fishing and Natural Mortality Rates

In Tables 9 - 11 we present estimates of fishing and natural mortality for a
range of reporting rates based on Models 1, 4, and 0 respectively. In each table finite
and instantaneous rates are presented for each age class. We believe the reader should
concentrate on the Model 1 estimates because they have the best precision (but they
might be a little more biased). Plausible estimates for F and M arise for reporting
rates of A = 0.40 or 0.33. If we use A = 0.33 we obtain estimates of M which are
around 0.2 and are approximately constant over the age classes examined. Of course
for age class 1 the natural mortality rate is much higher.

In Tables 12 - 14 we present estimates of fishing mortality if we assume Z is
calculated from the survival rate and M is equal to the nominal value of 0.2. The
estimates do generally increase as one would expect. However, the increase is not as
smooth as one might expect. This is because either M is not constant over age or
because the lack of precision of the estimates of Z is causing variations which causes
the fishing mortality estimates to not increase smoothly.

Reporting Rate Estimates

If we assume Model 1 as a basis and a natural mortality rate M = 0.2 as
reasonable for higher age classes the results of Table 9 suggest a A 0of 0.40 - 0.33.

If we assume Model 4 as a basis and again a natural mortality M = 0.2 as
reasonable for higher age classes the results of Table 10 suggest A of 0.33 - 0.25.

If we assume Model 0 as a basis and again a natural mortality M = 0.2 as
reasonable the results of Table 11 suggest A of about 0.25.
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Table 9. Natural and fishing mortality rates (finite and instantaneous) for a range of possible
reporting rates. Model 1 estimates are used as a basis of the calculations.

Age Class
Parameter 2 3 4 5 6 7 8
S 0.780 0.713 0.743 0.725 0.668 0.626 0.648
1-S 0.220 0.287 0.257 0.275 0.332 0.374 0.352
4 0.249 0.338 0.297 0.322 0.404 0.468 0.434
A=100%
u 0.012 0.029 0.046 0.052 0.065 0.074 0.089
' 0.208 0.258 0.211 0.223 0.267 0.300 0.263
F 0.012 0.029 0.047 0.053 0.067 0.077 0.093
M 0.237 0.309 0.250 0.269 0.337 0.391 0.341
A=50%
u 0.025 0.058 0.091 0.104 0.130 0.148 0.177
v 0.195 0.229 0.166 0.171 0.202 0.226 0.175
F 0.025 0.060 0.096 0.110 0.139 0.160 0.195
M 0.224 0.278 0.201 0.212 0.265 0.308 0.239
A=40%
u 0.031 0.073 0.114 0.130 0.162 0.185 0.221
v 0.189 0.214 0.143 0.145 0.170 0.189 0.131
F 0.031 0.075 0.121 0.140 0.177 0.205 0.250
M 0.217 0.263 0.176 0.182 0.227 0.264 0.184
A=33%
u 0.037 0.087 0.137 0.156 0.194 0.222 0.266
v 0.183 0.200 0.120 0.119 0.138 0.152 0.087
F 0.038 0.091 0.147 0.170 0.216 0.251 0.309
M 0.211 0.247 0.150 0.152 0.187 0.217 0.125
A=25%
u 0.049 0.116 0.182 0.208 0.259 0.296 0.354
v 0.171 0.171 0.075 0.067 0.037 0.078 0
F 0.051 0.123 0.201 0.234 0.300 0.351 0.434
M 0.198 0.215 0.096 0.088 0.104 0.117 0

While these results are tentative they do suggest a reporting rate in the range
of 0.40 - 0.25. Of course an alternative possibility would be that M = 0.2 is not
reasonable. The only way we can obtain a more definitive estimate of reporting rate
is to do a special study as we discuss later.
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DISCUSSION AND CONCLUSIONS
Model Estimates

Based on the results in the previous section we can make the following
conclusions about survival and recovery rates of Pacific halibut:

(1) Direct recovery rates are low and non-informative. This may be due to the time
tags were applied just previous to the fishing season or to marking influencing the
animals behavior.

Table 10. Natural and fishing mortality rates (finite and instantaneous) for a range of
possible reporting rates. Model 4 estimates are used as a basis of the calculations.

Age Class
Parameter 2 3 4 5 6 7 8
S 0.782 0.708 0.708 0.704 0.602 0.602 0.602
1-S 0.218 0.292 0.292 0.296 0.398 0.398 0.398
Z 0.246 0.345 0.345 0.351 0.508 0.508 0.508
A=100%
u 0.012 0.022 0.032 0.042 0.052 0.062 0.072
v 0.206 0.270 0.260 0.254 0.346 0.336 0.326
F 0.012 0.022 0.033 0.043 0.053 0.064 0.075
M 0.234 0.323 0.312 0.308 0.455 0.444 0.433
A=50%
u 0.025 0.045 0.064 0.084 0.104 0.124 0.143
v 0.193 0.247 0.228 0.212 0.294 0.274 0.255
F 0.025 0.460 0.066 0.088 0.110 0.132 0.154
M 0.221 0.299 0.279 0.263 0.398 0.376 0.354
A=40%
u 0.031 0.058 0.080 0.105 0.130 0.155 0.179
v 0.187 0.234 0.212 0.191 0.268 0.243 0.219
F 0.031 0.060 0.083 0.111 0.139 0.168 0.197
M 0.215 0.285 0.262 0.240 0.369 0.340 0.311
A=33% .
u 0.037 0.067 0.096 0.126 0.156 0.185 0.215
\ 0.181 0.225 0.196 0.170 0.242 0.213 0.183
F 0.038 0.069 0.101 0.135 0.170 0.205 0.242
M 0.208 0.276 0.244 0.216 0.338 0.302 0.265
A=25%
u 0.050 0.089 0.128 0.168 0.208 0.247 0.287
v 0.158 0.203 0.164 0.128 0.190 0.151 0.111
F 0.051 0.093 0.137 0.184 -0.233 0.284 0.338
M 0.195 0.252 0.208 0.167 0.274 0.224 0.170
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(2) Indirect recovery rates are strongly age and calendar year (at recovery) dependent.
These rates appear to increase in an approximately linear manner as age class increases
for the range of ages we examined (Age 6 - Age 213).

(3) Survival rates are strongly age and year dependent. Pacific halibut of age 6 have
a survival rate of about 56% on average. This rises to about 78% for age 7 fish and
then drops to approximately 70% for age 8, 9 and 10 fish. Ages 11, 12 and 213 have
an approximately constant survival rate of about 60% on average. These results are
fairly consistent over the models used to obtain the estimates. Due to violations of

Table 11. Natural and fishing mortality rates (finite and instantaneous) for a range of
possible reporting rates. Model 0 estimates are used as a basis of the

calculations.
Age Class

Parameter 2 3 4 5 6 7 8
S 0.783 0.660 0.706 0.697 0.620 0.592 0.618
1-S 0.217 0.340 0.294 0.303 0.380 0.408 0.382
Z 0.245 0.416 0.348 0.361 0.478 0.524 0.481

A=100%
u 0.016 0.022 0.037 0.040 0.052 0.059 0.062
v 0.201 0.318 0.257 0.263 0.328 0.349 0.320
F 0.016 0.022 0.038 0.041 0.053 0.061 0.064
M 0.229 0.394 0.310 0.320 0.425 0.463 0.417

A=50%
u 0.033 0.044 0.073 0.079 0.104 0.117 0.123
v 0.184 0.296 0.221 0.224 0.276 0.291 0.259
F 0.034 0.045 0.076 0.082 0.110 0.124 0.131
M 0.211 0.371 0.272 0.279 0.368 0.400 0.350

A=40%
u 0.041 0.055 0.092 0.099 0.130 0.147 0.154
v 0.176 0.285 0.202 0.204 0.250 0.261 0.228
F 0.042 0.057 0.076 0.082 0.139 0.159 0.167
M 0.203 0.359 0.251 0.257 0.339 0.365 0.314

A=33%
u 0.049 0.066 0.110 0.119 0.156 0.176 0.185
v 0.168 0.274 0.184 0.184 0.224 0.232 0.197
F 0.050 0.068 0.117 0.127 0.170 0.194 0.205
M 0.195 0.348 0.231 0.234 0.308 0.330 0.276

A=25%
u 0.066 0.088 0.147 0.158 0.208 0.234 0.246
v 0.151 0.252 0.147 0.145 0.172 0.174 0.136
F 0.068 0.092 0.159 0.172 0.233 0.267 0.282
M 0.177 0.324 0.189 0.189 0.245 0.257 0.199
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Table 12. Natural and fishing mortality rates (instantaneous) calculated from Z = -log.(S)
with M assumed equal to 0.2. Model 1 estimates are used as a basis of the

calculations.
Age Class
Parameter 2 3 4 5 6 7 8
Z 0.249 0.338 0.297 0.322 0.404 0.468 0.434
M 0.200 0.200 0.200 0.200 0.200 0.200 0.200
F 0.149 0.138 0.097 0.122 0.204 0.268 0.234

Table 13. Natural and fishing mortality rates (instantaneous) calculated from Z = -log.(S)
with M assumed equal to 0.2. Model 4 estimates are used as a basis of the

calculations.
Age Class
Parameter 2 3 4 5 6 7 8
4 0.246 0.345 0.345 0.351 0.508 0.508 0.508
M 0.200 0.200 0.200 0.200 0.200 0.200 0.200
F 0.046 0.145 0.145 0.151 0.308 0.308 0.308

Table 14. Natural and fishing mortality rates (instantaneous) calculated from Z = -log.(S)
with M assumed equal to 0.2. Model 0 estimates are used as a basis of the

calculations.
Age Class
Parameter 2 3 4 5 6 7 8
Z 0.245 0.416 0.348 0.361 0.478 0.524 0.481
M 0.200 0.200 0.200 0.200 0.200 0.200 0.200
F 0.045 0.216 0.148 0.161 0.278 0.324 0.281

model assumptions that we discuss later we suspect these estimates are biased low to
some unknown degree.

(4) A reporting rate of A = 0.4 - A = 0.25 seems plausible under the assumption of a
natural mortality rate of M = 0.2 for older fish. There does not appear to be any clear
trend in natural mortality rate with age but our data limitations suggest caution in
conclusions here.

(5) Considering the complexity of the models used here the goodness of fit to our
models was very reasonable except for the newly tagged fish recoveries. There was
substantial lack of fit in the cells but we suspect this did not have much influence on
the important survival and indirect rate estimates we presented.

(6) We did have some difficulty in fitting some of the iterative models here due to the
large number of parameters to be estimated. However, the consistency of results
between models suggest that our results are reliable.
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Model Assumptions

There are numerous assumptions behind the tagging models discussed in this
article. We discuss the validity of these assumptions when applied to Pacific halibut
tagged data. The discussion is based on Pollock and Raveling (1982) with some
extensions.

(1) The Tagged Sampie is Representative of the Target Population

This assumption is obvious but very important especially if heterogeneity of
survival and recovery rates (Assumption 6) occurs. If, for example, tagging tends to
take place in areas with heavy fishing pressure then this could give the appearance of
high recovery rates and low survival rates for the whole region under study. This
suggest designing tagging studies so that the tagging is dispersed over a wide area of
each region under study.

(2) There is No Tag Loss

Nelson et al. (1980) examined this assumption by using simulation and found
that its violation causes a negative bias on survival estimates that is worse for species
with high survival rates. Unfortunately there is a tag loss for halibut. The recovery
rates and hence the exploitation rate estimates will also be negatively biased. There
is a need for a new double tagging study to obtain estimates of tag loss so that survival
and recovery rates estimates can be adjusted.

(3) Survival Rates are not Influenced by Tagging

This assumption is obviously important because if there is substantial mortality
due to the tagging process, the survival estimates would not apply to the untagged
fish. Tagging mortality tends to be higher for smaller fish and lower for fish caught
on circle hooks (G. St-Pierre, personal communication)?. The use of condition codes
for stratification should help but St-Pierre also notes that condition codes vary widely
among experiments. We do not know if it is practical to consider holding experiments
to evaluate short term tagging mortality but we suggest a future study along these
lines.

(4) The Year (Fishing Season) of Tag Recovery, Size at Release, Location and Other
Important Information is Correctly Tabulated

Sometimes a commercial fisherman may report tags in a later year than when
the fish was actually caught. We do not know how likely this is for halibut, but to the
extent such incidents occur they operate to produce a positive bias on survival
estimates. Other violations could cause positive or negative biases.

2St-Pierre, G. International Pacific Halibut Commission. P.O. Box 95009, Seattle, WA 98145-2009
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(5) The Fate of Each Tagged Fish is Independent of the Fate of Other Tagged Fish

This assumption is probably violated in almost all practical applications of
tag return models. Fish are not independent entities in terms of survival or other
characteristics. This will not bias any estimators, but will mean that true sampling
variances are larger than those estimated by statistical models. Thus, any collected
confidence intervals will be narrower than they should be.

A simple (albeit unrealistic) example for illustration is to consider a population
composed of independent pairs of fish that behave as thought they are a single
individual. A sample of n individuals from this population is effectively only one
half of n and, hence, any sampling variance will be twice those for the models that
assume the sample is n independent individuals. The actual situation in real populations
is much more complex, with many partially dependent members, but the effective
sample size will still be much less than the actual sample size. To get around this
problem, Burnham et al. (1987) suggest obtaining empirical estimates of variances
by subdividing release cohorts into batches.

(6) All Tagged Fish Within an Identifiable Class Have the Same Annual Survival and
Recovery Rates

We believe heterogeneity of survival and recovery rates is likely to occur in
practice but we do not know how serious it will be in halibut tagging studies. Pollock
and Raveling (1982) and Nichols et al. (1982) examined this assumption using
analytical methods and simulation. They found that if only recovery rates are
heterogeneous then there is no bias in survival estimates and the recovery rate
estimates can be viewed as averages for the population. If survival probabilities are
heterogeneous over the population, there is likely to be a strong positive relationship
between the survival probabilities of an individual from year to year. There is also
likely to be a negative relationship between survival and recovery probabilitites for
an individual. In this situation, survival rate estimators will generally have a negative
bias. The negative bias will be more serious where the average survival rate is high
and for studies of short duration. It is theoretically possible for the survival rate
estimator to have a positive bias. This could occur if there were segments of the
population with markedly different survival rates but similar recovery rates. This
implies that the difference in survival of the segments would have to be mostly due to
differences in natural mortality. This might occur if drastically different environmental
conditions were encountered by the segments (e.g. disease level, food supply, water
temperature, etc.). Some of these factors vary on a local or regional scale.

(7) The Halibut of Size Class 1 will Increase its Length to the Size Class i + 1 After
One Year

If this assumption is not satisfied, it will cause the violation of assumption
(6). For example: IPHC released 482 tagged halibut of size class 1 in 1979, and these
fish are treated as one cohort (i.e. an identifiable class). Under the assumption (7),
we assume the cohort will grow synchronously to size class 2 next year. If some of
the fish are still in size class 1 in 1980, their recovery rates may be lower than those
fish which increase their length to size class 2 in 1980. Therefore we are saying that
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non-synchronous growth will cause heterogeneity of recovery rates in a cohort. This
could be investigated further using simulation.

Data Limitations

Since the survival rates of Pacific halibut are high, the violation of assumptions
(2), (6) and (7) can cause negatively biased survival estimators. With halibut the
possible violations of the homogeneity assumption might be caused by fish growth,
sexual differences or the violation of assumption (7). Because the sex information is
not available for the Pacific halibut data, we cannot test whether heterogeneity exists
between male and female fish. The best way to avoid the violation of assumption (7)
is to collect the age information at release of the tagged fish if possible. If the age of
each tagged halibut is not easy to identify in practice, an age-length key can be used
to convert the length to age. An unrealistic age-length key will cause a serious violation
of assumption (7).

Another limitation of the data is the small number of tag recoveries for some
age classes. This is due to the reporting rate being so low. Later we emphasize how
to estimate the reporting rate but here we also emphasize that a method of increasing
the reporting rate would be very important to increase the precision of the survival
and recovery estimates. Perhaps higher rewards could be given for tag returns. The
simple alternative of tagging larger numbers of Pacific halibut is probably not feasible.

Computational Limitations

We have extended a 3 age classes model to an 8 age classes model.
Theoretically, Brownie’s model can be extended to any number of age classes, if the
data are available. However there are limitations to developing extensions in practice,
because the MLE’s do not have closed form in general, and must be obtained by
numerical optimization techniques using a computer. In the research, we have tried
both SAS NLIN and program SURVIV to compute the MLE’s and we found that
SURVIV seems more accurate than NLIN as the number of parameters increases.
SURVIYV, however, is limited in the maximum number of allowable parameters, and
in the ways we can model survival as a function of age. Thus we need better software
to handle models with large numbers of parameters, or where survival is modeled as
a function of age.

Future Special Studies

It is clear to us that there are several special problems with the halibut data
which need to be addressed either by changing procedures or by carrying out special
studies to estimate parameters which could be used to adjust and improve survival
and exploitation rate estimates.

(1) Tag Loss

Both R. Deriso (personal communication)® and St.Pierre (personal
communication)? reacted to our earlier work by suspecting that our survival rate

3Deriso, R. International Pacific Halibut Commission. P.O. Box 95009, Seattle, WA 98145-2009.
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estimates were biased low due to tag loss. A double tagging study, although expensive,
would be useful in providing an estimate of tag loss which could be used to adjust
our estimates.

(2) Tag Induced Mortality

Another potential serious problem with the halibut tagging data is tagging
and handling induced mortality. We do not have a good suggestion here. For some
species holding experiments are used to estimate short term tagging and handling
mortality. If practical this would be very valuable for halibut.

(3) Increased Reward Tags

As we discussed under data limitations an increased reward on tags would
increase the reporting rate and hence the number of tag returns. This would increase
the precision of survival and recovery rate estimates. We recommend that an increased
reward on tags be considered.

(4) Reporting Rate

The parameter we call A the reporting rate is actually the probability of a
tagged halibut having the tag found and reported. This parameter is extremely
important in that if it could be estimated then tag recovery rate can be converted to
exploitation rate. It also allows natural mortality rate to be estimated by subtraction
(Pollock et al. 1991). We explored this approach in a previous section (Estimates of
fishing and natural mortality rates) for a range of reporting rates but our conclusions
were tentative because we did not have an independent estimate of A.

The probability of a tag being found is hard to estimate but could possibly be
estimated if a special study were set up where total catch of some boats were searched
for tags. Given a tag has been found the probability of it being reported could be
estimated using a variable reward tagging study. Some tags would need to have known
stamped rewards of high amounts so that it would be safe to assume that all of those
tags were reported. This would enable us to obtain an estimate of the reporting
probability (given the tag found) for regular tags (Pollock et al. 1991).
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APPENDICES

Appendix I. Recovery information for Pacific halibut in Areas 2B, 2C, and 3A.

Appendix II.
Table A2-1. The estimations of identifiable parameters (%) for Model 0.
Tables A2-2 - A2-5. The parameters estimates (%) and standard errors
(%) obtained.
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APPENDIX 1. Tables A1-1 through A1-8 represent recovery information for Pacific
halibut in Areas 2B, 2C, and 3A for different size categories as
indicated.

Table A1-1.  Size Class 8: > 129 cm

Year # released # recovered
1979 334 6 9 11 3 2 3 0 2
1980 572 13 12 9 7 12 7 2
1981 1817 2 63 26 34 11 16
1982 1000 1 35 31 35 25
1983 1416 21 74 87 61
1984 2066 4 120 138
1985 2116 12 196
1986 1295 1
Table A1-2. Size Class 7: 122-128 cm
Year # released # recovered
1979 108 1 4 1 0 0 1 0 0
1980 188 1 3 6 2 3 0 0
1981 475 0 15 9 8 9 4
1982 258 0 4 10 5 10
1983 379 2 14 26 16
1984 603 1 38 42
1985 539 6 45
1986 365 0
Table A1-3.  Size Class 6: 114-121 cm
Year # released # recovered
1979 117 2 3 1 1 0 0 0
1980 252 1 7 6 5 3 2 1
1981 516 1 14 10 11 4 1
1982 351 1 8 8 14 15
1983 447 1 22 21 29
1984 881 1 48 43
1985 752 6 52
1986 510 0
Table A1-4.  Size Class 5: 105-113 cm
Year # released # recovered
1979 142 1 5 3 2 0 2 0 1
1980 313 3 13 8 4 6 2 5
1981 574 0 6 9 8 4 12
1982 380 2 11 15 10 10
1983 604 4 28 20 35
1984 1166 0 56 67
1985 1035 6 68
1986 702 0
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Table A1-5.  Size Class 4: 96-104 cm
Year # released # recovered
1979 177 3 3 4 1 1 1 2 0
1980 390 6 10 9 7 8 6 4
1981 515 0 12 10 11 7 12
1982 512 0 10 19 17 17
1983 581 3 20 29 25
1984 1426 3 50 67
1985 1157 7 60
1986 790 0
Table A1-6.  Size Class 3: 86-95
Year # released # recovered
1979 280 1 8 5 5 2 1 1 1
1980 583 6 11 9 10 11 3 5
1981 584 2 6 10 14 10 8
1982 676 3 10 27 20 17
1983 674 2 22 24 24
1984 1814 4 70 67
1985 1423 13 67
1986 980 3
Table A1-7.  Size Class 2: 75-85 cm
Year # released # recovered
1979 445 5 10 8 5 3 5 1 4
1980 1032 2 18 6 17 13 15 10
1981 823 0 6 13 11 9 18
1982 969 3 14 39 29 37
1983 881 0 20 29 25
1984 2419 1 57 78
1985 2287 11 76
1986 1509 3
Table A1-8.  Size Class 1: 64-74 cm
Year # released # recovered
1979 482 1 2 3 3 3 4 4 4
1980 1530 1 5 7 12 12 15 11
1981 978 0 5 2 13 16 14
1982 820 0 3 17 17 24
1983 1228 3 10 17 24
1984 2405 0 24 46
1985 2217 4 18
1986 1459 0
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APPENDIX 2.

Table A2-1.  The estimations of identifiable parameters (%) for Model 0.

Size Class: i; Recovery year: j

Parameter 1 2 3 4 5 6 7 8
fgi* 0.07 0.20 0.31 0.00 0.00 0.00 0.00 0.08
f;* 0.18 0.48 0.91 0.61 0.58 0.80 1.11 0.57
f;* 0.00 0.04 0.22 0.21 0.00 0.11 0.17 0.19
fsi* 0.24 0.00 0.30 0.52 0.66 0.22 0.53 1.48
f;* 0.00 0.31 0.44 0.00 0.53 0.29 0.00 0.11
f3‘* 0.00 0.00 0.34 0.00 0.00 0.19 0.00 0.11
fz’* 0.07 0.19 1.03 1.54 0.96 0.40 0.53 2.27
fl’* 0.21 1.12 0.36 1.70 0.70 1.71 0.93 1.80
f; 1.48 2.75 4.58 5.02 5.72 7.05 8.68
f, 1.35 2.86 4.11 5.13 5.69 8.22 7.48
f; 434 1.09 3.06 3.88 5.75 4.52 5.59
f, 1.33 1.56 1.65 3.67 3.98 5.50 7.59
fai 0.63 2.09 343 2.32 4,28 4.31 4.01
f, 0.71 2.84 5.20 3.73 5.70 5.53 3.56
sify! 6.31 2.84 3.80 4.58 5.99 6.12 7.24 8.70
Sg 67.30 84.60 80.03 72.61 89.13 71.51 75.42 70.78
si5 56.73 82.45 83.36 77.95 82.22 74.50 72.04 71.77
sz 84.21 100.0* 68.76 72.57 53.53 66.80 56.80 63.17
s; 38.44 59.43 56.45 66.21 41.14 45.15 47.16 40.55
si2 51.13 74.83 54.54 100.0* 94.44 66.23 56.91 51.80
si1 55.85 68.21 52.59 34.10 56.98 48.07 47.00 72.94

* estimate is above 100%
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Table A2-2.

The parameter estimates (%) and standard errors (%) obtained from SURVIV for Model 1.

Size Class: i; Recovery year: j

Parameter 1 2 3 4 5 6 7 8
f;' j= 1.8 0.09(0.03) 0.24(0.05) 0.48(0.08) 0.40(0.08) 0.33(0.08) 0.34(0.09) 0.38(0.11) 0.57(0.07)
f J‘ ji=2,.8 1.23(0.17) 2.90(0.24) 4.56(0.36) 5.21(0.41) 6.48(0.54)  7.40(0.68) 8.85(0.45)
s§ ]=1,..,7 | 56.46(4.07) 78.01(5.04) 71.27(4.93) 74.28(5.30) 72.54(5.56) 66.78(5.66) 62.62(4.26) 64.84(1.49)
Table A2-3.  The parameter estimates (%) and standard errors (%) obtained from NLIN for Model 3.
Size Class: i; Recovery year: j
Parameter 1 2 3 4 5 6 7 8
f;' j=1,..,8 | 0.090.03) 0.24(0.05) 0.48(0.08) 0.40(0.08) 0.33(0.08) 0.34(0.09)  0.38(0.11) 0.57(0.07)
fgi 1.46(0.35) 4.33(0.47) 6.41(0.64) 8.05(0.79) 10.60(1.03) 12.71(1.32)  16.57(0.97)
f7i 1.78(0.38) 3.06(0.41) 5.88(0.66) 6.30(0.69) 7.58(0.88) 9.11(1.10) 11.01(0.71)
f6i 1.46(0.48) 3.57(0.62) 5.87(0.74) 5.19(0.96) 6.72(0.88)  8.53(1.23) 8.56(0.65)
f; 0.69(0.35) 1.39(0.33) 2.57(0.47) 3.56(0.61) 4.24(0.81)  4.23(0.88) 4.71(0.51)
f4i 0.91(0.43) 1.14(0.32) 1.36(0.37) 3.22(0.69) 3.00(0.71)  4.64(1.05) 5.41(0.57)
f; 0.58(0.28) 2.06(0.48) 2.97(0.74) 3.78(0.94) 5.85(1.43) 4.75(1.51) 4.54(0.83)
fzi 0.74(0.54) 2.88(0.98) 4.11(1.53) 2.42(1.54) 5.21(2.37)  5.64(2.91) 4.90(1.34)
sij=1,.,7 | 5597(4.14) 77.69(5.14) 68.75(4.38) 69.78(5.08) 67.67(5.24) 60.83(5.22) 59.49(4.05) 60.99(1.38)
1
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Table A2-4. The parameter estimates (%) and standard errors (%) obtained from SURVIYV for Model 2.

Size Class: i; Recovery year: j

Parameter 1 2 3 4 5 6 7 8

f; j=1,..,8] 0090.03) 024005  0.48(0.08) 0400.08)  0.33(0.08) 034009  038(0.11) 0.57(0.07)
fgi 1.55 393 6.31 8.69 11.07 13.45 15.83
f7i 1.82 333 4.83 6.33 7.84 9.34 10.84
f6i 2.32 3.39 4.46 5.53 6.61 7.68 8.75
fsi 0.87 1.58 2.28 2.99 3.70 4.41 5.11
f; 0.55 1.29 2.04 2.78 3.53 4.27 5.02
f; 0.90 1.72 2.54 3.37 4.19 5.01 5.84
f2i 1.49 2.20 291 3.61 432 5.03 5.74

Sij =1,.,7 | 5347(3.67) 79.29(3.83) 74.36(3.37) 64.51(3.00) 6741(3.000 60.66(2.85) 60.85(2.86) 61.33(1.13)
b0j 0.07(096) -0.75(049)  -0.94(039) -0.54(046) 0.17(0.64) -1.18(048) -3.21(0.52)
blj 0.71(024)  0.82(0.13) 0.74(0.09)  0.71(0.10)  1.07(0.13) 1.50(0.11)  2.38(0.14)

where fji =bl0j+bljx1i




Table A2-5.

The parameter estimates (%) and standard errors (%) obtained from NLIN for Model 4.

Size Class: i; Recovery year: j
Parameter 1 2 3 4 5 6 7 8
f;‘ j=1..8 0.09(0.03) 0.24(0.05)  0.49(0.08) 0.40(0.08) 0.33(0.08) 0.34(0.09)  0.37(0.11)  0.56(0.07)
f! 1.98 3.22 4.46 5.70 6.94 8.18
f) 1.77 2.82 3.87 491 5.96 7.01
fl 0.42 1.48 2.53 3.59 4.64 5.70
f) 0.81 1.77 2.73 3.69 4.65 5.61
fsi 1.02 1.70 2.38 3.07 3.75 4.43
f; 1.45 240 3.34 428 5.23 6.17
skfik = 6,..,8 9.14(0.52)  7.20(0.69)
$ff 6.69(0.60)
sify 4.82(0.48)
3 sty 4.62(0.47)
sty 3.40(0.37)
s;fg2 0.81(0.19)
s;i =6,.,8 51.09(10.18)  66.06(7.94) 4544(4.09) 53.70(4.40) 78.55(5.34)  66.44(4.87)
s? 66.61(19.32) 100.0%(--) 45.11(5.78)  60.49(5.78)  76.51(7.85)  73.62(7.44)
s‘j‘ 42.57(12.23) 100.0%(--) 59.86(9.62) 78.79(10.24)  78.70(9.13)  64.58(6.54)
S? 59.60(12.88) 69.31(11.77) 48.10(7.62) 75.90(10.23) 91.48(11.03)  80.66(8.44)
sj? 77.31(15.67)  82.54(13.08) 57.85(8.99) 98.33(12.64) 81.25(10.71)  72.17(8.57)
s; 51.67(12.37)  49.91(840) 39.48(6.47) 84.50(14.09)  56.03(9.25)  54.03(9.07)
b0j -0.44(1.26)  -0.34(0.59) -1.11(0.62) -1.69(0.40) -0.32(0.67)  -0.50(0.67)
blj 0.94(0.36)  0.68(0.15) 0.96(0.15) 1.06(0.12) 1.05(0.14) 1.24(0.15)

; *estimate is above 100%

where f'=b0j+bljx i




